Assistant Professor of Law, Economics, and Data Science
ETH Zürich
IFW E47.1

Curriculum Vitae

Google Scholar Page

Research Interests:

Law and Economics, Political Economy, Public Finance, Applied Micro, Machine Learning, Text Data

Upcoming Workshops

Zürich Text as Data Group (first annual workshop on October 24-25, 2019!).

Selected Papers

Ideas Have Consequences: The Impact of Law and Economics on American Justice(with Daniel L. Chen and Suresh Naidu). Abstract

This paper provides a quantitative analysis of the effects of the early law and economics movement on the U.S. judiciary. Using the universe of published opinions in U.S. Circuit Courts and 1 million District Court criminal sentencing decisions linked to judge identity, we estimate the effect of attendance in the controversial Manne economics training program, an intensive course attended by almost half of federal judges between 1976 and 1999. After attending economics training, participating judges use more economics language, render more conservative verdicts in economics cases, rule against regulatory/taxation agencies more often, and impose longer criminal sentences. These results are robust to adjusting for a wide variety of covariates that predict the timing of attendance.

Does Politicized Media Distort Political Discourse? Evidence from U.S. Cable News Channels” (with Elena Labzina) Abstract

While previous work has shown that partisan media affects voter choices, an open question is whether and how partisan news messaging influences the language of political discourse. This paper provides evidence on this influence in the context of the U.S. Congress and major cable news networks for the years 2005 through 2008. We measure media influence using a measure of the similarity between language in Congressional speeches and language used by speakers on Fox News, CNN, and MSNBC. Exogenous variation in news exposure across congressional districts comes from relative channel numbering, which we use as instruments. We find that Fox News has had the largest effect on Congressional language, with MSNBC and CNN having little effect. Cable news has no effect on partisanship of roll call votes nor on the partisanship of speech.

What drives partisan tax policy? The effective tax codeAbstract

This paper contributes to recent work in political economy and public finance that focuses on how details of the tax code, rather than tax rates, are used to implement redistributive fiscal policies. I use tools from natural language processing to construct a high-dimensional representation of tax code changes from the text of 1.6 million statutes enacted by state legislatures for the years 1963 through 2010. A data-driven approach is taken to recover the effective tax code – the language in tax law that has the largest impact on revenues, holding major tax rates constant. I then show that the effective tax code drives partisan tax policy: relative to Republicans, Democrats use revenue-increasing language for income taxes but use revenue-decreasing language for sales taxes (consistent with a more redistributive fiscal policy) despite making no changes on average to statutory tax rates. These results are consistent with the view that due to their relative salience, changing tax rates is politically more difficult than changing the tax code.

How Cable News Reshaped Local Government” (with Sergio Galletta). Abstract

Partisan cable news broadcasts have a causal effect on the size and composition of budgets in U.S. localities. Utilizing channel positioning as an instrument for viewership, we show that exposure to the conservative Fox News Channel shrinks local government budgets, while liberal MSNBC enlarges them. Revenue changes are driven by shifts in property taxes, a key tool for local redistributive policy. Expenditure changes are driven by public hospital expenditures, an important discretionary public good provided by local governments. We also find evidence that Fox exposure increased privatization (while MSNBC decreased it). An analysis of mechanisms suggests that the results are driven by changes in voter preferences, but not by changes in partisan control of city governments.

Conservative News Media and Criminal Justice: Evidence from Exposure to Fox News Channel” (with Michael Poyker). Abstract

Exposure to conservative news causes judges to impose harsher criminal sentences. Our evidence comes from an instrumental variables analysis, where randomness in television channel positioning across localities induces exogenous variation in exposure to Fox News Channel. These treatment data on news viewership are taken to outcomes data on almost 7 million criminal sentencing decisions in the United States for the years 2005–2017. Higher Fox News viewership increases incarceration length, and the effect is stronger for black defendants and for drug-related crimes. The effect is observed for elected, and not appointed, judges, consistent with voter attitudes as a potential mechanism. The effect becomes weaker as judges get closer to election, suggesting a diminishing marginal effect for judges who are already politically engaged.

Media Coverage: New Statesman.

“Do Judicial Sentiments affect Social Attitudes?” (with Sergio Galletta and Daniel L. Chen). Abstract

This paper provides an empirical analysis of how the sentiments expressed in judicial rulings affect social attitudes. We apply natural language processing tools to the text of U.S. appellate court opinions to extrapolate judges’ sentiments toward a number of specific target groups. Exogenous variation in those sentiments comes from an instrumental variables approach, which exploits the random assignment of judges to cases (and the fact that judge characteristics provide good cross-validated predictors of expressed sentiments). Our estimates are consistent with a backlash effect from judge sentiments to social attitudes. This effect does not persist over time and is heterogeneous depending on the target group considered.

Published Papers

The Making of International Tax Law: Evidence from Treaty Text” (with Omri Marian), Florida Tax Review (forthcoming). Abstract

We offer the first attempt at empirically testing the level of transnational consensus on the legal language controlling international tax matters. We also investigate the institutional framework of such consensus-building. We build a dataset of 4,052 bilateral income tax treaties, as well as 16 model tax treaties published by the United Nations (UN), Organisation for Economic Co-operation and Development (OECD) and the United States. We use natural language processing to perform pair-wise comparison of all treaties in effect at any given year. We identify clear trends of convergence of legal language in bilateral tax treaties since the 1960s, particularly on the taxation of cross-border business income. To explore the institutional source of such consensus, we compare all treaties in effect at any given year to the model treaties in effect during that year. We also explore whether newly concluded treaties converge towards legal language in newly introduced models. We find the OECD Model Tax Convention (OECD Model) to have a significant influence. In the years following the adoption of a new OECD Model there is a clear trend of convergence in newly adopted bilateral tax treaties towards the language of the new OECD Model. We also find that model treaties published by the UN (UN Model) have little immediate observable effect, though UN treaty policies seem to have a delayed, yet lasting effect. We conclude that such findings support the argument that a trend towards international legal consensus on certain tax matters exists, and that the OECD is the institutional source of the consensus building process.

Case vectors: Spatial representations of the law using document embeddings” (with Daniel L. Chen), in: Law as Data, Santa Fe Institute Press (2019). Abstract

Recent work in natural language processing represents language objects (words and documents) as dense vectors that encode the relations between those objects. This paper explores the application of these methods to legal language, with the goal of understanding judicial reasoning and the relations between judges. In an application to federal appellate courts, we show that these vectors encode information that distinguishes courts, time, and legal topics. The vectors do not reveal spatial distinctions in terms of political party or law school attended, but they do highlight generational differences across judges. We conclude the paper by outlining a range of promising future applications of these methods.

Sequential decision-making with group identity” (with Jessica Van Parys), Journal of Economic Psychology (2018). Abstract

In sequential decision-making experiments, participants often conform to the decisions of others rather than reveal private information — resulting in less information produced and potentially lower payoffs for the group. This paper asks whether experimentally induced group identity affects players’ decisions to conform, even when payoffs are only a function of individual actions. As motivation for the experiment, we show that U.S. Supreme Court Justices in preliminary hearings are more likely to conform to their same-party predecessors when the share of predecessors from their party is high. Lab players, in turn, are more likely to conform to the decisions of in-group members when their share of in-group predecessors is high. We find that exposure to information from in-group members increases the probability of reverse information cascades (herding on the wrong choice), reducing average payoffs. Therefore, alternating decision-making across members of different groups may improve welfare in sequential decision-making contexts.

What kind of judge is Brett Kavanaugh? A quantitative analysis” (with Daniel L. Chen), Cardozo Law Review (2018). Abstract

This article reports the results of a series of data analyses of how recent Supreme Court nominee Brett Kavanaugh compares to other potential Supreme Court nominees and current Supreme Court Justices in his judging style. The analyses reveal a number of ways in which Judge Kavanaugh differs systematically from his colleagues. First, Kavanaugh dissents and is dissented against along partisan lines. More than other Judges and Justices, Kavanaugh dissents at a higher rate during the lead-up to elections, suggesting that he feels personally invested in national politics. Far more often than his colleagues, he justifies his decisions with conservative doctrines, including politicized precedents that tend to be favored by Republican-appointed judges, the original Articles of the Constitution, and the language of economics and free markets. These findings demonstrate the usefulness of quantitative analysis in the evaluation of judicial nominees.

Judge, Jury, and EXEcute File: The brave new world of legal automation,” Social Market Foundation (2018).

Emerging tools for a ‘driverless’ legal system: Comment,” Journal of Institutional and Theoretical Economics (2018).

Elections and divisiveness: Theory and evidence” (with Massimo Morelli and Richard Van Weelden), Journal of Politics (2017). Abstract

This paper provides a theoretical and empirical analysis of how politicians allocate their time across issues. When voters are uncertain about an incumbent’s preferences,  there is a pervasive  incentive to “posture” by spending too much time on divisive issues (which are more informative about a politician’s preferences) at the expense of time spent on common-values issues (which provide greater benefit to voters).  Higher transparency over the politicians’ choices can exacerbate the distortions. These theoretical results motivate an empirical study of how Members of the U.S. Congress allocate time across issues in their floor speeches.  We find that U.S. Senators spend more time on divisive issues when they are up for election, consistent with electorally induced posturing. In addition, we find that U.S. House Members spend more time on divisive issues in response to higher news transparency.

New Policing, New Segregation: From Ferguson to New York” (with Jeffrey Fagan), Georgetown Law Journal (2017).Abstract

Modern policing emphasizes advanced statistical metrics, new forms of organizational accountability, and aggressive tactical enforcement of minor crimes as the core of its institutional design. Recent policing research has shown how this policing regime has been woven into the social, political and legal systems in urban areas, but there has been little attention to these policing regimes in smaller areas. In these places, where relationships between citizens, courts and police are more intimate and granular, and local boundaries are closely spaced with considerable flow of persons through spaces, the “new policing” has reached deeply into the everyday lives of predominantly non-white citizens through multiple contacts that lead to an array of legal financial obligations including a wide array of fines and fees. Failure to pay these fees often leads to criminal liability. We examine two faces of modern policing, comparing the Ferguson, Missouri and New York City. We analyze rich and detailed panel data from both places on police stops, citations, warrants, arrests, court dispositions, and penalties, to show the web of social control and legal burdens that these practices create. The data paint a detailed picture of racially discriminatory outcomes at all stages of the process that are common to these two very different social contexts. We link the evidence on the spatial concentration of the racial skew in these policing regimes to patterns of social and spatial segregation, and in turn, to the social, economic and health implications for mobility. We conclude with a discussion of the implications of the “new policing” for constitutional regulation and political reform.

Intrinsic motivation in public service: Theory and evidence from state supreme courts” (with Bentley MacLeod), Journal of Law and Economics (2015).Abstract

This paper provides a theoretical and empirical analysis of the intrinsic preferences of state appellate court judges. We construct a panel data set using published decisions from state supreme court cases merged with institutional and biographical information on all (1,636) state supreme court judges for the 50 states of the United States from 1947 to 1994. We estimate the effects of changes in judge employment conditions on a number of measures of judicial performance. The results are consistent with the hypothesis that judges are intrinsically motivated to provide high-quality decisions, and that at the margin they prefer quality over quantity. When judges face less time pressure, they write more well-researched opinions that are cited more often by later judges. When judges are up for election then performance falls, suggesting that election politics take time away from judging work – rather than providing an incentive for good performance. These effects are strongest when judges have more discretion to select their case portfolio, consistent with psychological theories that posit a negative effect of contingency on motivation.

On the behavioral economics of crime” (with Frans van Winden), Review of Law & Economics (2012).Abstract

This paper examines the implications of the brain sciences’ mechanistic model of human behavior for our understanding of crime. The standard rational-choice crime model is refined by a behavioral approach, which proposes a decision model comprising cognitive and emotional decision systems. According to the behavioral approach, a criminal is not irrational but rather ‘ecologically rational,’ outfitted with evolutionarily conserved decision modules adapted for survival in the human ancestral environment. Several important cognitive as well as emotional factors for criminal behavior are discussed and formalized, using tax evasion as a running example. The behavioral crime model leads to new perspectives on criminal policy-making.

Working Papers

Measuring Discretion and Delegation in Legislative Texts: Methods and Application to U.S. States” (with Massimo Morelli and Matia Vannoni). Abstract

Bureaucratic discretion and executive delegation are central topics in political economy and political science. The previous empirical literature has measured discretion and delegation by manually coding large bodies of legislation. Drawing from computational linguistics, we provide an automated procedure for measuring discretion and delegation in legal texts to facilitate large-scale empirical analysis. The method uses information in syntactic parse trees to identify legally relevant provisions, as well as agents and delegated actions. We undertake two applications. First, we produce a measure of bureaucratic discretion by looking at the level of legislative detail for U.S. states and find that this measure increases after reforms giving agencies more independence. This effect is consistent with an agency cost model where a more independent bureaucracy requires more specific instructions (less discretion) to avoid bureaucratic drift. Second, we construct measures of delegation to governors in state legislation. Consistent with previous estimates using non-text metrics, we find that executive delegation increases under unified government.

Divided Government, Delegation, and Civil Service Reform” (with Massimo Morelli and Matia Vannoni). Abstract

This paper sheds new light on the drivers of civil service reform in U.S. states. We first demonstrate theoretically that divided government is a key trigger of civil service reform, providing nuanced predictions for specific configurations of divided government. We then show empirical evidence for these predictions using data from the second half of the 20th century: States tended to introduce these reforms under divided government, and in particular when legislative chambers (rather than legislature and governor) were divided.

Selection and incentive effects of elections: Evidence from state supreme courts (with W. Bentley MacLeod). Abstract

Using data on state supreme court judges for the years 1947 through 1994, we find that judges selected by nonpartisan elections and judges selected by technocratic merit commissions produce higher-quality work than judges selected by partisan elections. Election-year pressure reduces work output, but only partisan elections reduce work quality. Moving from nonpartisan elections to uncontested elections increases work quality for incumbent judges, while there is no effect on incumbent judge performance when moving from partisan to nonpartisan elections, or when moving from partisan to uncontested elections, consistent with the hypothesis that non-partisan judges have a greater intrinsic value for quality.

Proportional Representation Increases Party Politics: Evidence from New Zealand Parliament using a Supervised Topic Model” (with Massimo Morelli and Moritz Osnabrügge). Abstract

This paper investigates how electoral systems influence political attention in parliamentary democracies. The empirical setting is the 1993 electoral reform in New Zealand, which replaced a first-past-the-post system with a mixed-member proportional representation system. To analyze how this reform changed the allocation of political attention, we use a new supervised topic model to learn the distribution of political attention in the text of 300,000 parliamentary speeches for the years 1987 through 2002. The main finding is that the reform increased the attention share devoted to party politics, which includes discussions of party competence or incompetence (rather than policy). Discussion of policy-oriented topics decreases. This finding highlights the perhaps under-appreciated cost of partisan conflict in proportional representation systems.

Fiscal pressures and discriminatory policing: Evidence from traffic stops in Missouri” (with Allison Harris and Jeffrey Fagan). Abstract

This paper provides evidence of racial variation in traffic enforcement responses to local government budget stress using data from policing agencies in the state of Missouri from 2001 through 2012. Like previous studies, we find that local budget stress is associated with higher citation rates; we also find an increase in traffic-stop arrest rates. However, we find that these effects are concentrated among white (rather than black or Latino) drivers. The results are robust to the inclusion of a range of covariates and a variety of model specifications, including a a regression-discontinuity examining bare budget shortfalls. Considering potential mechanisms, we find that targeting of white drivers is higher where the white-to-black income ratio is higher, consistent with the targeting of drivers who are better able to pay fines. Further, the relative effect on white drivers is higher in areas with statistical over-policing of black drivers: when black drivers are already getting too many fines, police cite white drivers from whom they are presumably more likely to be able to raise the needed extra revenue. These results highlight the relationship between policing-as-taxation and racial inequality in policing outcomes.

A research-based ranking of public policy schools” (with Miguel Urquiola). Abstract

This paper presents research-based rankings of public policy schools in the United States. In 2016 we collected the names of about 5,000 faculty members at 44 such schools. We use bibliographic databases to gather measures of the quality and quantity of these individuals’ publication output. These measures include the number of articles and books written, the quality of the journals the articles have appeared in, and the number of citations all have garnered. We aggregate these data to the school level to produce a set of rankings. The results differ significantly from existing rankings, and in addition display substantial across-field variation.

Works in Progress

“The language of contract: Promises and power in union collective bargaining agreements” (with Bentley MacLeod and Suresh Naidu).

“Gender stereotypes in judicial language” (with Daniel L. Chen and Arianna Ornaghi).

“Aging, Retirement, and High-Skill Work Performance: The Case of State Supreme Court Judges” (with Bentley MacLeod).

“Emotion and reason in political language” (with Gloria Gennaro)

“Causes and consequences of tax law complexity: Evidence from U.S. state legislative texts” (with Malka Guillot)

“Property taxes and local labor markets: Evidence from staggered property reassessments.”

“Algorithms as prosecutors: Lowering rearrest rates without disparate impacts” (with Daniel L. Chen).